Хромосомы, большая статья

Оглавление

  1. Дорога к бессмертию
  2. Бессмертие и религия
  3. Философия бессмертия
  4. Бессмертие и наука
  5. История анабиоза
  6. Смерть
  7. Кора головного мозга
  8. Бессмертие и анабиоз
  9. Анабиоз, медицина и биология
  10. Анабиоз и экономика
  11. Анабиоз и закон
  12. Анабиоз в Антарктиде
  13. Техническое обеспечение анабиоза
  14. Бессмертие и вера
  15. Библиотека Ordo Deus
  16. Контактная страница Ordo Deus

Хромосомы, большая статья

Хромосомы — главные структурно-функциональныеэлементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 г. из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов. В ядре таких кле¬ток хромосом всегда несколько, они составляют хромосомный набор. В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом. У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи, которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин — из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках — гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит Х-хромосому, а другая — Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненныев 70-х гг. 19 в. И.Д. Чистяковым, О. Гертвигом, Страсбургером (Е. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 в. это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях, факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В20—40-х гг. 20 в. преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С.Г. Навашин, Г.А. Левитский, Л.Н. Делоне, П. И. Живаго, А.Г. Андрес, М.С. Навашин, А.А. Прокофъева-Белъговская, а также зарубежные — Хейтц (Е. Heitz), Дарлингтон (С.D. Darlington) и другие С 50-х гг. для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 г. Тио (Н.J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х гг. после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в метафазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков положило начало цитогенетическим исследованиям. В конце 19 — начале 20 вв. Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е.В. Wilson) были заложены основы хромосомной теории наследственности, согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30—40-е гг. 20 в., первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х гг. для этих целей стали при-менять фото- и спектрометрию, рентгено-структурный анализ и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты, гистоновых и негистоновых белков, а также рибонуклеиновой кислоты. Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК.

В естественных условиях в отдель¬ных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина — нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10—70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина как в интерфазной, так и в метафазной хромосоме.

В геноме эукариот выделяют несколько классов ДНК по числу повторяющихся последовательностей нуклеотидов, составу последовательностей, их размерам. У человека ДНК может быть подразделена на ДНК с многократно повторяющимися последовательностями нуклеотидов, включая сателлитную ДНК (около 10,3%), ДНК с умеренно повторяющимися последовательностями (около 12,3%), ДНК с низкой их повторяемостью (13,4%), а также ДНК, состоящую из уникальных последовательностей (около 64%). У человека четыре основных типа сателлитных ДНК локализуются в большинстве хромосом, но неодинаково распределяются по типам и количеству. ДНК с многократно повторяющимися последовательностями содержится преимущественно в гетерохроматине (сильно спирализованных и интенсивно окрашенных районах хромосомы). На поперечник хромосомы при ее максимальной деконденсации приходится одна молекула ДНК. В метафазной хромосоме составляющая ее молекула ДНК должна укоротиться в 104 раз по сравнению с ее длиной в свободном от белков состоянии. Взаимодействие ДНК с гистонами при формировании нуклеосом и нити диаметром 10 нм обеспечивает укорочение исходной нити ДНК примерно в 6,5 — 7 раз и увеличение диаметра с 3 нм. до 10 нм. В нативном хроматине преобладают нити второго порядка диаметром 20—30 нм, в фибриллах этого уровня общее укорочение ДНК оказывается примерно 40-кратным.

ДНК с умеренным числом повторов обнаруживается главвным образом в G-окрашивающихся сегментах. С помощью флюорохромов по-разному связывающихся с аденин-тимин и гуанин-цитозин парами оснований ДНК, показано различие участков метафазной хромосомы по составу оснований. Специфичность ДНК в разных участках хромосом, вероятно, определяет их различие по генетической активности.

Структурно-функциональая организация хромосом

Функциями хромосом являются: хранение генов – носителей генетической информации, заключенной в молекулярной структуре ДНК; самовоспроизведение генетической информации; передача генетической информации для реализации в признак; рекомбинация сцепленных генов между гомологичными хромосомами в гаметогенезе, обеспечивающая рекомбинацию признаков родителей в потомстве; обратимое изменение структур хромосом (конденсация — деконденсация), необходимое для дифференциальной активности генов и правильного распределения хромосом в дочерних клетках во время деления изменение числа групп сцепленных генов и порядка их сцепления как важный фактор изменчивости биологических видов в их эволюции. Функционирование хромосом тесно связано с преобразованиями их структуры. Взаимодействие структуры и функции имеет свои особенности на разных уровнях организации хромосом.

На светооптическом микроскопическом уровне морфология хромосом различна в отдельные моменты их преобразований, которые являются частью клеточного цикла и состоят главным образом в конденсации хромосом на пути к митозу или мейозу и деконденсации при переходе к интерфазе.

В интерфазе хромосомы максимально де конденсированы, индивидуально неразличимы и занимают весь объем ядра, образуя так наз. хроматин. Плотность хромати¬на в разных участках ядра обычно неодинакова — слабо окрашенные основными красителями участки перемежаются с интенсивно окрашенными. Сопоставление по-разному окрашенных участков интерфазного хроматина с морфологией индивидуальных хромосом при их митотической конденсации и деконденсации позволило выделить два типа хроматина — эухроматин и гетерохроматин. Топография гетерохроматиновых сегментов в интерфазном ядре свидетельствует в пользу упорядоченности расположения в нем хромосом, их связи с ядерной мембраной. Морфология хромосом связана с их репродукцией и поэтому различается в разные фазы клеточного цикла. Судить об этом удается с помощью индукции конденсации хромосом ядра клетки в интерфазе. В G1-фазе интерфазные хромосомы однонитчаты (однохроматидны). В G2-фазе, когда репродукция завершена, все хромосомы состоят из двух хроматид на всем протяжении.

Одна из основных функций хромосом — считывание генетической информации — также осуществляется в интерфазе. Особенности морфологии хромосом в этот момент недоступны для исследования на интерфазных ядрах диплоидных клеток, но их удалось исследовать на политенных хромосомах (греч. poly много + tainia лента, полоса) — интерфазных X., обнаруженных главным образом в клетках слюнных желез личинок некоторых видов отряда двукрылых насекомых и состоящих из многократно редуплицированных и неразошедшихся исходных хроматид, тесно прилегающих друг к другу. В световом микроскопе они выглядят в виде лент, поперечно исчерченных из-за чередования по всей длине интенсивно окрашенных участков (дисков) и светлых (междисковых) пространств (рис. 1,а). Диск представляет собой участок плотно сложенной хроматиновой нити (хромомера). Для каждой хромосомы данного биологического вида число, размеры и топография дисков строго определенны. Хромомера политенной хромосомы содержит один или более генов в неактивном состоянии. Наблюдается попеременное набухание и разрыхление дисков — образование так называемых пуфов (рис. 1,б). Гигантские пуфы некоторых специфических дисков названы кольцами Бальбиани. Процесс образования пуфов представляет собой деконденсацию хроматиновых нитей, упакованных в диске (рис. 1,в) и является обратимым. В цитогенетике появление пуфов рассматривается в качестве морфологического выражения транскрипционной активности генов.

Рисунок №1
Участок политенной хромосомы с дисковой стрктурой(а) и образованием пуфа (б).
Схема иллюстрирует возникновение пуфа путем деконденденсации четырех хроматиновых нитей, уложенных в хромомере (в).

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель — деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Рисунок №2
Схема хромосомы в метафазе деления клетки:
1 - спутник; 2 - вторичная спутничная перетяжка; 3 - первичная (центромерная) перетяжка; 4 - вторичная несптуничная перетяжка; 5 - сестринские хроматиды.

Рисунок №3
Хромосомный набор человека в метафазе деления клетки:
1 - акроцентрическая хромосома со спутником в коротком плече; 2 - метацентрическая хромосома; 3 - субметацентрическая хромосома с вторичной перетяжкой в околоцентромерном районе длинного плеча.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х гг., обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку — участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру — кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку — спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко. Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х гг. разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые итемные полосы) линейной структуры каждой хромосомы по всей еедлине: Q-окраска (Q — от англ.quinacrine акрихин), получаемая спомощью акрихина, акрихин-иприта и других флюорохромов;G-окраска (G — от фамилии Giemsa), получаемая с помощью красителя Гимзы после инкубации препаратов хромосом в специальных условиях; R-окраска (R — от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С — от centromere центромера), располагающихся рядом с центромерой — С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y-хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом. Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

Рисунок №4
Хромосома 1 человека при разных способах окраски:
а - сплошная окраска; б - Q-окраска; в - G-окраска; г - R-окраска; д - рисунок последовательности репликации ДНК, выявлюемый с помощью 5-бромдезоксиуридина; е - С-окраска; ж - схема дифференцированности хромосомы по длине.

На электронно-микроскопическом уровне основной ультраструктурной единицей интерфазного хроматина при просвечивающей электронной микроскопии является нить диаметром 20—30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20—30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30—60 нм. Изменчивость хромосом в онтогенезе и эволюции. Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы — непременное условие нормального развития в онтогенезе и сохранения биологического вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биологических видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохрома-тина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.

Рисунок №5
Электронограмма изолированнной метфазной хросомы в физиологически условиях; (увеличение 10.000 раз).

Захаров А.Ф.

⇐ Перейти на главную страницу сайта

⇑ Вернуться в начало страницы ⇑

Библиотека Ordo Deus ⇒

⇐ Каталог заглавий

⇓ Каталог систематический ⇓

Каталог заболеваний ⇒

Все статьи в полном изложении, Вы можете найти в большой медицинской энциклопедии — Главный редактор: академик АН СССР (РАН) и АМН СССР (РАМН) Б.В. Петровский. — Москва издательство «Советская энциклопедия» 1989г.

Внимание! Вы находитесь в библиотеке «Ordo Deus». Все книги в электронном варианте, содержащиеся в библиотеке «Ordo Deus», принадлежат их законным владельцам (авторам, переводчикам, издательствам). Все книги и статьи взяты из открытых источников и размещаются здесь только для чтения.

Библиотека «Ordo Deus» не преследует никакой коммерческой выгоды.

Все авторские права сохраняются за правообладателями. Если Вы являетесь автором данного документа и хотите дополнить его или изменить, уточнить реквизиты автора, опубликовать другие документы или возможно вы не желаете, чтобы какой-то из ваших материалов находился в библиотеке, пожалуйста, свяжитесь с нами по e-mail:
info @ ordodeus. ru
Формы для прямой связи с нами находятся в нижней части страниц: контакты и устав «Ordo Deus», для перехода на эти страницы воспользуйтесь кнопкой контакты вверху страницы или ссылкой в оглавлении сайта.

Вас категорически не устраивает перспектива безвозвратно исчезнуть из этого мира? Вы желаете прожить ещё одну жизнь? Начать всё заново? Исправить ошибки этой жизни? Осуществить несбывшиеся мечты? Перейдите по ссылке: «главная страница».

© Ordo Deus, 2010. При копировании ссылка на сайт http://www.ordodeus.ru обязательна.